Принципы деятельности нервной системы. Психика, нервная система, мозг
 
» »

Принципы деятельности нервной системы. Психика, нервная система, мозг

23.09.2019

В течение длительной эволюции органического мира - от простейших одноклеточных животных к человеку - физиологические механизмы поведения постоянно усложнялись. В частности, в одноклеточного организма единственная клетка выполняет все функции жизнедеятельности. Это орган, чувствует, движется, осуществляет пищеварения. Конечно же, его возможности очень ограничены. У более высокоорганизованных животных происходит специализация органов, связанная с появлением клеток, единственной функцией которых становится восприятие сигналов (это рецепторы). Другие клетки берут на себя мышечную работу или секрецию различных желез (это эффекторы). Но специализация разделяет органы и функции, а целостная жизнедеятельность организма требует непрерывной связи между ними, чего достигают благодаря центральной нервной системе, которая работает как единое целое.

У всех позвоночных общий план строения нервной системы одинаков. Основной элемент нервной системы - нервные клетки, или нейроны. Нейрон состоит из тела клетки и отростков, название которых дендриты (воспринимают возбуждение) и аксон (передает возбуждение). Контакт аксона с дендритами или телом другого нервной клетки называют синапсом. Синапса оказывают решающее значение в объяснении механизма установления новых связей в нервной системе.

Центральная нервная система (ЦНС) состоит из спинного и головного мозга. Различные ее части выполняют разные виды сложной нервной деятельности. Чем выше расположена та или иная часть мозга, тем сложнее ее функции. Ниже расположен спинной мозг - он регулирует работу отдельных мышечных групп и внутренних органов. Над ним расположен продолговатый мозг вместе с мозжечком, который координирует более сложные функции организма (они вовлекают в совместную деятельность большие группы мышц и ЦЕЛИ системы внутренних органов, осуществляющих функции дыхания, кровообращения, пищеварения и т.д.). Еще выше расположен отдел центральной нервной системы - средний мозг, он участвует в регуляции сложных движений и положения всего тела. Продолговатый и средний мозг вместе образуют стволовую часть головного мозга.

Самые высокие отделы центральной нервной системы представлены большими полушариями головного мозга. В состав больших полушарий входят скопления нервных клеток, которые содержатся в глубине, - так называемые подкорковые узлы. На самой поверхности полушарий расположен слой нервных клеток - кора головного мозга. Она представляет собой как бы плащ или мантию, покрывает большие полушария. И поверхность (около 2000 см2), как известно, собранная в ряде складок или борозд и извилин. Подкорковые узлы вместе с расположенными поблизости от них зрительными буграми называют пидкирною. Кора вместе с подкоркой осуществляет сложные формы рефлекторной деятельности.

Все части нервной системе работают в тесном взаимодействии, но роль каждой из них в разных реакциях организма не одинакова. Спинной мозг и стволовая часть головного мозга, составляет его нижние отделы -довгастий и средний мозг, представляют собой совокупность рефлекторных центров врожденных безусловных рефлексов. В спинном мозге есть центры простейших рефлексов (например, коленного рефлекса). Наряду с рефлекторными центрами, регулирующих работу скелетных мышц туловища и конечностей, в спинном мозге расположены центры, регулирующие работу внутренних органов (защитные действия в обезглавленной лягушки, например).

Ствольная часть головного мозга является центральным аппаратом, который осуществляет ряд сложных и жизненно важных безусловно-рефлекторных актов, в частности сосательный рефлекс, жевание и глотание (во время раздражения ротовой полости пищевыми веществами). Рефлекторные центры, регулирующие все эти рефлексы, размещенные в продолговатом мозге. Там же расположены и нервные центры, регулирующие некоторые защитные рефлексы: чихание, кашель, слезотечение.

В среднем мозге рядом с центрами, передают возбуждение с глаза и уши на двигательную сферу, есть центр сужение зрачка, но этим не исчерпывается деятельность стволовой части головного мозга. Особое значение имеют нервные центры, в продолговатом мозге. Они регулируют работу органов дыхания, сердечно-сосудистой системы, а также других систем, которые поддерживают постоянство внутренней среды организма.

Очень сложные функции выполняет мозжечок: организм только тогда может сохранять устойчивое равновесие при ходьбе, беге, прыжках и т.п., когда осуществляется чрезвычайно тонкое регулирование состояния всех мышц тела. Настройка деятельности всей скелетно-мышечной системы зависит от мозжечка. Рефлекторная деятельность спинного мозга и стволовой части головного мозга охватывает относительно узкий круг ответных реакций организма. Формы рефлекторной деятельности высокоорганизованных животных значительно разнообразнее, для них характерны сложные рефлекторные процессы.

Пидкирна (зрительные бугры и подкорковые узлы больших полушарий) обеспечивает самую сложную безусловно-рефлекторную деятельность. Отметим сразу, что название зрительные бугры не соответствует их настоящий функции: на самом деле зрительные бугры является подкорковым чувствительным центром. А подкорковые узлы являются двигательным аппаратом подкорки и регулируют, в частности, ходьбу.

Орган сознательной деятельности человека - кора больших полушарий, поэтому главным является вопрос о взаимосвязи психики человека и коры больших полушарий, которое конкретизированы в науке как вопрос о функциональной локализации или локализации психических функций в коре.

Всю поверхность больших полушарий можно разделить на несколько больших частей, которая имеют неодинаковое функциональное значение. их называют долями головного мозга. Задняя часть полушарий - затылочная доля, спереди переходит в теменную и височную доли. Передняя, наибольшая по размерам часть полушарий - лобная доля, наиболее развитая у человека. При этом анализ и синтез зрительных раздражений происходят в затылочной доле коры (зрительная зона коры); анализ и синтез слуховых раздражений - в верхних отделах височной доли (слуховая зона коры); анализ и синтез осязательных раздражений и раздражений, возникающих в мышечно-суставной аппарате, - в передней части теменных отделов и тому подобное.

Головной мозг человека, который обеспечивает получение и переработку информации "создание программ собственных действий и контроль за их успешным выполнением, всегда работает как единое целое. Однако это сложный и высокодифференцированный механизм, имеющий несколько отделов. Поэтому нарушение нормального функционирования каждой из них неизбежно сказывается на его работе. В головном мозге человека обычно выделяют три основных блока, каждый из которых играет свою особую роль в обеспечении психической деятельности.

Первый поддерживает тонус коры, необходимый для того, чтобы и процессы получения и переработки информации, и процессы формирования программ и контроля за их выполнением происходили успешно.

Второй блок обеспечивает сам процесс приема, переработки и хранения информации, доходящей до человека из внешнего мира (от аппаратов ее собственного тела).

Третий блок производит программы поведения, обеспечивает и регулирует их реализацию, участвует в контроле за их успешным выполнением. Все три блока расположены в отдельных отделах головного мозга, и только слаженная работа приводит успешную организацию сознательной деятельности человека.

Итак, кратко охарактеризуем каждый из перечисленных блоков. Блок тонуса коры, или энергетический блок мозга. Для нормального осуществления процессов жизнедеятельности и саморегуляции поведения необходимо постоянное поддержание оптимального тонуса коры. Для осуществления этих процессов необходима оптимальная возбудимость коры. Суть одного из важных открытий, которые физиологи сделали во время многочисленных наблюдений и экспериментов, в том, что существенную роль в этом процессе играют образования верхних отделов ствола мозга, в частности гипоталамуса, зрительного бугра и системы сетевидные волокон ("ретикулярной формации"), имеющих двустороннюю связь с корой головного мозга. Эти образования входят как основные в состав первого блока.

Первым источником для бодрого состояния коры является постоянный приток раздражений с периферии, важнейшую роль в обеспечении которого играют аппараты верхнего ствола мозга и восходящей ретикулярной формации.

Вторым, не менее важным источником поддержания постоянного тонуса коры, является импульсы, которые поступают к нему от внутренних обменных процессов организма, составляющих основу для биологических поездов.

Итак, первый блок мозга, в состав которого входят аппараты верхнего ствола, ретикулярной формации и древней коры, обеспечивает общий тонус коры (ее бодрость) и возможность длительное время сохранять следы раздражения. Работа этого блока не связана специально с теми или иными органами чувств и имеет "модально-неспецифический" характер, обеспечивая общий тонус коры.

Блок приема, переработки и хранения информации.

Блок, о котором пойдет речь, непосредственно связан с работой по анализу и синтезу сигналов, привнесенных органами чувств из внешнего мира, иначе говоря, с приемом, обработкой и сохранением получаемой человеком информации. Он состоит из аппаратов, расположенных в задних отделах коры головного мозга (теменной, височной и затылочной долей) и, в отличие от первого блока, имеет модально-специфический характер.

Образно говоря, этот блок является системой центральных приборов, воспринимающих зрительную, слуховую и тактильную информацию, перерабатывают или "кодируют" ее и сохраняют в памяти следы полученного опыта. Аппараты этого блока можно рассматривать как центральные (корковые) отделы систем восприятия (анализаторов). При этом, как мы уже отмечали, корковые отделы зрительного анализатора расположены в затылочной, слуховые - в височной, тактильно-кинестетические - в теменной доле.

В этих отделах коры заканчиваются волокна, идущие от соответствующих аппаратов восприятия (рецепторных) здесь выделяют и регистрируют отдельные признаки зрительной, слуховой и тактильной информации, поступающей. В сложных отделах этих зон они объединяются, синтезируются и комбинируются в более сложные структуры. Эти зоны коры имеют тонкую клеточную структуру. Те зоны коры, к которым непосредственно поступают волокна от периферических органов, называют первичными, или проекционными зонами; те зоны, примыкающие к проекционным, называют вторичными, или проекционно-ассоциативными зонами.

Принцип иерархического построения каждой зоны коры бы одним из важнейших принципов строения коры головного мозга.

Над каждой первичной, или проекционной зоной коры надстроены вторичные, или проекционно-ассоциативные зоны коры. Волокна, поступающих сюда не идут, как правило, непосредственно от периферического рецептора, они либо содержат обобщенные импульсы, либо приходят во вторичные зоны коры из первичных.

Как показали многочисленные исследования, первичные зоны чувственной коры имеют функции выделения тех или иных модально-специфических (зрительных, слуховых, тактильных) признаков.

Первичные и вторичные зоны коры не исчерпываются корковыми аппаратами рассматриваемого блока. Над ними надстроены аппараты третичных зон коры (или "зон перекрытия корковых концов отдельных анализаторов"), которые имеют важное значение для обеспечения наиболее комплексных форм работы этого блока. Третичные зоны коры головного мозга в значительной степени специфически человеческими образованиями. Третичные зоны коры созревают очень поздно в онтогенезе, а их основная функция - в объединении информации, поступающей в кору головного мозга от различных анализаторов.

Все это свидетельствует, что третичные зоны коры является важным аппаратом, необходимым для сложных форм обработки и кодирования получаемой информации.

Блок программирования, регуляции и контроля деятельности. Третий блок головного мозга человека осуществляет программирование, регуляцию и контроль активной человеческой деятельности. В него входят аппараты, расположенные в передних отделах больших полушарий, ведущее место в нем принадлежит лобовым частям головного мозга.

Сознательная деятельность человека только начинается с получения и обработки информации, а заканчивается она формированием намерений, выработкой соответствующей программы действий и выполнением этих программ во внешних (двигательных) или внутренних (умственных) актах.

Для этого нужен специальный аппарат, который мог бы создавать и удерживать нужные намерения, вырабатывать соответствующие программы действий, осуществлять их в нужных актах и, что очень важно, постоянно следить за действиями, происходящими сверяя эффект выполняемого действия с исходными намерениями.

Все эти функции осуществляют передние отделы мозга и их лобные доли. Как и задние отделы мозга, передние имеют тесные связи с ниже расположенными образованиями ретикулярной формации, кроме того, что немаловажно, здесь особенно мощно представлены и восходящие, и нисходящие волокна ретикулярной формации, которые вызывают импульсы, сформированные в лобных долях коры, и тем самым регулируют общее состояние активности организма, изменяя его в соответствии со сложившимися в коре намерений.

Первичной, или проекционной зоной передних отделов мозга? передняя центральная извилина, или моторная доля коры: над ней надстроен вторичное, премоторных поле (поле Бродмана) еще выше расположен образования коры собственно лобной или передфронтальнои доли.

Лобные доли мозга, которые обладают мощными связями с восходящей и нисходящей ретикулярной формацией, выполняют значительную активизирующее роль. В частности, напряженная интеллектуальная работа, которая требует повышенного тонуса коры, вызывает в лобных долях повышенное количество синхронно возбуждаемых участков, которые совместно работают. Поддерживая тонус коры, необходимый для выполнения поставленной задачи, лобные доли мозга играют решающую роль в создании намерений и формировании программы действий, которые осуществляют эти намерения.

Общие представления об основных физиологические механизмы функционирования мозга. Как известно, все, даже самые сложные формы работы мозга, в основе психической деятельности, построенные по типу рефлексов. Все рефлексы делятся на две большие группы: безусловные и условные.

Безусловными рефлексами называют врожденные и более или менее постоянные рефлексы, которые осуществляют отделы нервной системы, расположенные ниже коры головного мозга. Благодаря безусловным рефлексам приспособление организма к внешнему миру достигают лишь в узких пределах, так как эти рефлексы возникают в ответ на сравнительно небольшое количество раздражителей и имеют обычно стандартный характер. Поэтому с помощью безусловных рефлексов осуществляется только по сравнению несовершенное приспособление организма к меняющимся условиям среды.

Новыми меняющимися формами реагирования, которые формируются в течение жизни организма (с накоплением жизненного опыта) и которые осуществляются в высших животных корой головного мозга, является условные рефлексы. Во время образования условных рефлексов раздражитель, который ранее был безразличен для организма, становится сигналом другого раздражителя, что для организма прямое жизненное значение. Равнодушен к этому (индифферентный) раздражитель приобретает тем самым новую сигнальную функцию.

Раздражители, которые вызывают безусловные рефлексы, называют безусловными. Раздражители, которые вызывают условные рефлексы и имеют сигнальное значение, называют условными. Образование условных рефлексов - это формирование в мозге новых временных связей. Эти связи в высших животных и у человека формируются в коре больших полушарий, которые являются главным субстратом психики.

Образование условных рефлексов, иначе говоря - замыкание временных связей, является основной работой коры больших полушарий. Поэтому деятельность коры головного мозга называют замыкающий деятельностью.

Известно, что раздражитель, действующий на органы чувств, вызывает раздражение определенного участка коры головного мозга. Это раздражение не остается на месте, а распространяется, или иррадиирует по коре, захватывая также ближайшую подкорку. Существенным является тот факт, что иррадиация раздражения не происходит равномерно во всех направлениях.

Место крупнейшего в этот момент раздражения в коре головного мозга называют доминантой - устойчивым очагом раздражения. Если в коре головного мозга возникает устойчивая доминанта, то всякое раздражение, что его вызывает любой относительно слабый раздражитель, привлекается к этому очага, распространяется в его направлении. Учение о доминанте как господствующее очаг раздражения в мозге сформировал выдающийся российский физиолог А.А. Ухтомский.

Существенным для образования условных рефлексов является отсутствие каких-либо сильных посторонних раздражителей. И, наконец, для образования условных рефлексов достаточно важный деятельное состояние коры головного мозга. В русле современных физиологических представлений говорится об общем фоне бодрости организма. Сегодня психофизиология располагает анатомические, физиологические и клинические сведения, свидетельствующие о непосредственной причастности к явлениям общей активизации мозга различных структур неспецифической системы мозга, главным образом ретикулярной формации. ее основная функция в том, что она участвует в организации перехода организма от состояния торможения (сна) в состояние возбуждения (бодрости).

Замыкания временных связей является основной синтезирующей деятельностью коры головного мозга. В то же время образование условного рефлекса всегда связано с выделением того раздражителя, на который образуется рефлекс. Эта сложная аналитико-синтетическая деятельность коры головного мозга, что в основе образования условных рефлексов, позволяет достичь необходимого приспособления организма к условиям жизни.

И последнее, что мы рассмотрим, то, как происходит движение нервных процессов в коре больших полушарий. Нервные процессы в коре больших полушарий, начинаясь в определенном месте, всегда распространяются в других участках нервной системы. Это явление, как уже было отмечено, называют иррадиацией. Процессом, противоположным иррадиации, является концентрация нервных процессов, то есть сосредоточение их в более ограниченном месте. Иррадиируют и концентрируются оба нервные процессы - возбуждение и торможение.

Важное значение в деятельности нервной системы имеет закон взаимной индукции нервных процессов, согласно которому каждый из нервных процессов - возбуждения и торможения - приводит или усиливает противоположный процесс.

В естественных условиях жизни раздражители не существуют изолированно. Как правило, они возникают одновременно или последовательно. Любой предмет это одновременный комплекс раздражителей. Чтобы приспособиться к среде, мозг должен выработать возможность реагировать на цели системы раздражителей, тонко различая одну систему от другой. Синтетическую деятельность больших полушарий, которая позволяет объединять отдельные раздражители в целые комплексы, называют системной деятельностью коры головного мозга.

Системный принцип в работе коры больших полушарий проявляется и в возможности образования условного рефлекса не в отдельный раздражитель, а на совокупность раздражителей (дифференцированная реакция).

Важнейшим проявлением системности в работе коры является образование динамического стереотипа или целой системы реакций на определенные комплексы раздражителей. Принцип системности играет огромную роль в работе коры больших полушарий и имеет решающее значение для понимания физиологических механизмов психической деятельности, представляет собой сложную систему психических процессов.

Системная работа коры головного мозга позволяет не только осуществлять сложные формы деятельности, но и одновременно достигать наибольшей экономии в образовании и сохранении нервных связей. При наличии определенной системы связей человек способен воспроизвести поэлементно всю систему в целом, и это в значительной степени упрощает механизм закрепления навыков и знаний.

А у человека?

Окружающее нас пространство пронизано потоками электромагнитных излучений. Их источники - Солнце, далекие звезды, сама Земля. Мы живем в атмосфере невидимых электромагнитных полей. Их постоянное влияние на нас, как и на все живое, не столь заметно, как воздействие тепла или света, но оно несомненно существует. В отдельных случаях воздействие электромагнитных излучений мы наблюдаем зримо. На обезьяну направили мощное радиоизлучение с длиной волны в один метр. Пока оно не касалось головы, животное никак не реагировало. Но как только электромагнитные волны стали атаковать его мозг, обезьяна тут же насторожилась. Затем ее стало клонить ко сну, но ненадолго; сбросив с себя сонливость, животное начало крутить головой и скалить зубы, выражая явное неудовольствие.

Установлено, что сантиметровые радиоволны даже небольшой мощности замедляют биение сердца и понижают давление крови. Некоторым людям при облучении сантиметровыми волнами слышатся звуки. Американский психиатр Уиск обследовал женщину, которая... слышала радиоволны также, как мы слышим звуковые колебания в воздухе. Внешне это выглядело так, как будто она слушала целый десяток радиоприемников, работающих одновременно на разных волнах.

Врач проверил ее психику. Нет, это не было галлюцинацией. Затем выяснилось, что звуки женщина слышит только в своей квартире - в доме, который был недавно построен.

Уиск тщательно, с помощью различных чувствительных приборов, исследовал квартиру и установил, что в ней благодаря каким-то особенностям в расположении электропроводки, телефонных проводов, отопительной системы, радиосети генерируется электромагнитное поле, порождающее радиоволны, а женщина воспринимает их как голоса.

Человек - радиоприемник?!

Не поверив своему выводу, ученый проделал еще один опыт: сконструировал радиотехническое устройство, излучающее в пространство такие же радиоволны, и незаметно для своей подопытной включал это устройство. Та слышала голоса! Сомнений не оставалось: женщина обладала шестым "чувством". С какими аномалиями мы здесь встречаемся? Когда и почему такое бывает? Пока об этом можно лишь гадать. Ученые многократно проверяли воздействие магнитного поля на человеческий мозг. Вот один из экспериментов: человека погружали в гипнотический сон, внушали ему какую-нибудь картину-галлюцинацию, а затем подносили к голове сильный магнит. Внушенная галлюцинация исчезла. "У меня был сильный подковообразный магнит, который удерживал груз в полтора килограмма, - писал об этом Л. Л. Васильев. - Место поднесения магнита к голове испытуемого значения не имело - это мог быть затылок, лоб, темя, но, существенно, чтобы плоскость симметрии головы проходила между полюсами магнита. У пяти испытуемых магнит нарушал внушение галлюцинации, когда северный его полюс находился против левой стороны головы, а южный - против правой, и только у одного - при обратном положении полюсов". Как известно, деятельность нашего мозга сопровождается генерированием биотоков, - процессы возбуждения нервных клеток - это процессы электрические, вернее, электрохимические. Образно говоря, нервные волокна выполняют роль телеграфных проводов, по которым к мозгу и от мозга передаются электрические сигналы и приказы. Коль скоро это так, то можно думать, что работа мозга сопровождается электромагнитными излучениями - живой организм образует вокруг себя электромагнитное поле.

Еще около четверти века назад французский исследователь де Но обнаружил такое поле вокруг возбужденного нерва. Затем другие ученые зарегистрировали его влияние уже на расстоянии. Однако позднее такие же опыты дали отрицательные результаты. Выяснение вопроса затянулось на десятилетия. Но вот не так давно ленинградские исследователи П. Гуляев, В. Заботин и Н. Шлиппенбах снова и на этот раз самым убедительным образом показали, что вокруг изолированного нерва лягушки при его возбуждении создается электромагнитное поле, причем, оно существует лишь тысячные доли секунды. Таким образом, многое говорит за то, что наш организм, как и организм животных, создает свое электромагнитное поле и не остается безответным к воздействию внешних, окружающих нас полей. А отсюда - не так уж беспочвенна мысль о существовании особой радиосвязи в живой природе. Мы уже говорили о том, что человек в моменты крайней опасности способен совершить почти невозможное. Механизм этого явления еще далеко не ясен. Одна из загадок в том, каким образом мы, в кратчайшее время, порой мгновенно, мобилизуем все свои силы организма на свершение. "Отец" кибернетики Норберт Винер и советский ученый А. С. Пресман высказывают предположение, что в организме на этот случай существует своего рода аварийная сигнализация, которая и мобилизует все, на что мы способны.

На каком же принципе может работать такая сигнализация, если учесть, что самое главное здесь быстродействие? Первое, что приходит в голову, - это биорадиосвязь. Разумеется, никакими точными экспериментами для доказательства этой догадки мы не располагаем. В 1972 году Государственный комитет СССР по делам изобретений и открытий зарегистрировал явление межклеточных дистантных электромагнитных взаимодействий в системе двухтканевых культур. Честь этого открытия принадлежит сибирским ученым В. П. Казначееву, С. П. Шурину и Л. П. Михайловой. Не вдаваясь в подробности многолетних исследований, скажем о их сути. Оказывается, клетки, изолированные друг от друга, могут "обмениваться" информацией.

В двух камерах, разделенных кварцевыми окнами, которые могут пропускать ультрафиолетовые лучи и через которые можно "смотреть" друг на друга, выращиваются клетки живой ткани. Одну из камер заражают злокачественными вирусами. Они атакуют клетки, нарушая их жизнедеятельность. Одна за другой клетки гибнут. И тут открылось нечто поразительное: клетки, выращенные в соседней камере, также стали погибать! Этому еще нет объяснения, но сам факт строго доказан.

Деятельность высокоорганизованной нервной системы животных и особенно, конечно, человека таит в себе много загадок. Впрочем, весь мир живого необычайно сложный, с поистине неисчислимым количеством "белых пятен". К тому же многие методы изучения объектов неживой природы не годятся для познания процессов, происходящих в живых организмах и - в еще большей степени - для познания самих организмов как сложнейших самоорганизующихся систем.

Наука (прежде всего такие ее разделы, как биология, физиология, биофизика, биохимия и другие) вторглась в этот мир сравнительно недавно, тем не менее уже успела поразить нас рядом сенсационных открытий. Но неполнота наших знаний о живом, этой специфической форме существования материи, дает о себе знать буквально на каждом шагу. В качестве примера невольно вспоминаются бурные споры вокруг фактов, которые многим, в том числе ученым, кажутся неопровержимым доказательством наличия каких-то еще непознанных форм биоэнергетической связи между людьми. Выдвинута гипотеза о "биологическом поле", в котором могут быть сигналы, распространяющиеся по законам, не известным еще науке. Писатели-фантасты сочинили об этой биосвязи не один десяток романов, повестей, рассказов. И кто знает, не окажутся ли их пророчества справедливыми.


Высшая нервная деятельность - это процессы, происходящие в высших отделах центральной нервной системы животных и человека. К этим процессам относят совокупность условных и безусловных рефлексов, а также «высших» психических функций, которые обеспечивают адекватное поведение животных и человека в изменяющихся окружающих природных и социальных условиях. Высшую нервную деятельность следует отличать от работы центральной нервной системы по синхронизации работы различных частей организма между собой. Высшую нервную деятельность связывают с нейрофизиологическими процессами, проходящими в коре больших полушарий головного мозга и ближайшей к ней подкорке.

Непрерывное совершенствование психических процессов высшей нервной деятельности происходит двумя путями - эмпирическим и теоретическим. Теоретический осуществляется в процессе обучения (усвоения чужого опыта). Эмпирический осуществляется в процессе жизни - при получении непосредственного опыта и проверки сформированных в результате теоретического обучения стереотипов на личной практике.

Высшая нервная деятельность (ВНД) - это деятельность коры больших полушарий головного мозга и ближайших к ней подкорковых образований, обеспечивающая наиболее совершенное приспособление (поведение) высокоорганизованных животных и человека к окружающей среде. Высшую нервную деятельность центральной нервной системы следует отличать от работы центральной нервной системы по синхронизации работы различных частей организма между собой.

Термин " высшая нервная деятельность" впервые введён в науку И.П. Павловым, считавшим его эквивалентным понятию психическая деятельность. И.П. Павлов выделил в физиологии высшей нервной деятельности два основных раздела: физиологию анализаторов и физиологию условного рефлекса. В дальнейшем эти разделы были дополнены учением о второй сигнальной системе человека.

Благодаря работам И.П. Павлова физиология высшей нервной деятельности становится наукой о нейрофизиологических механизмах психики и поведения, базирующейся на принципе рефлекторного отражения внешнего мира.

Фундаментом ВНД являются условные рефлексы. Они возникают на основе сочетания действия безусловных рефлексов и условных раздражителей, к которым относятся сигналы, поступающие к человеку через зрение, слух, обоняние, осязание. У человека деятельность коры больших полушарий головного мозга обладает наиболее развитой способностью к анализу и синтезу сигналов, поступающих из окружающей и внутренней среды организма.

Мышление и сознание И.П. Павлов также относил к элементам ВНД. Непрерывное совершенствование высшей нервной деятельности происходит в процессе обучения (усвоения чужого опыта).

Индивидуальные особенности проявления высшей нервной деятельности зависят от характера, темперамента, интеллекта, внимания, памяти и др. свойств организма и психики. Расстройство высшей нервной деятельности человека (невроз) вызывается неблагоприятными условиями внешней среды (биологической и социальной), физическим и умственным перенапряжением и сопровождается нарушениями функций различных органов и систем.

История исследования высших функций мозга тесно связана с изучением психической деятельности, начало которого относится к временам глубокой древности. Понятие психического, как показывает само название (от греч. psychios - душевный), возникло у античных мыслителей и философов. Первые обобщения, касающиеся сущности психики, можно найти в трудах древнегреческих и римских ученых (Демокрит, Платон, Аристотель, Эпикур). Уже среди них были материалисты, считавшие, что психика возникла из естественных начал (воды, огня, земли, воздуха), и идеалисты, выводившие психические явления из нематериальной субстанции (души).

Представители материалистического направления (например, Демокрит) считали, что душа и тело едины, и не видели особых отличий между душой человека и душами животных. Напротив, представители идеалистического мировоззрения (Сократ, Платон и др.), рассматривали душу как явление, не связанное с телом и имеющее божественное происхождение.

Отдельные мыслители того времени, как правило, занимавшиеся практической медициной (Алкмеон Кротонский, Герофил, Эразистрат), высказывали догадки о связи психической деятельности с мозгом. Выдающийся древнегреческий врач Гиппократ (460-377 гг. до н.э.) и его последователи, тщательно изучая анатомию и физиологию, обобщая свой врачебный опыт, пытались выявить особенности и закономерности поведения людей в зависимости от их темперамента, хотя объяснения замеченных ими явлений часто были весьма наивными.

Первые экспериментальные исследования на животных связывают с именем римского врача Галена (129- 201гг.н.э.), по мнению которого душевная деятельность осуществляется мозгом и является его функцией. Гален испытывал действие различных лекарственных веществ на животных организмах, наблюдал их поведение после перерезки нервов, идущих от органов чувств к мозгу.

Гален описал некоторые мозговые центры, управляющие движениями конечностей, мимикой лица, жеванием и глотанием. Он различал разные виды деятельности мозга и впервые выдвинул положения о врожденных и приобретенных формах поведения, о произвольных и непроизвольных мышечных реакциях. Однако из-за слабого развития экспериментальных наук на протяжении многих веков изучение психических процессов проходило без связи с морфологией и физиологией мозга.



Каждый орган или система в организме человека играют свою роль. При этом все они взаимосвязаны. Значение трудно переоценить. Она отвечает за корреляцию между всеми органами и их системами и за функционирование организма в целом. В школе рано начинают ознакомление с таким многогранным понятием, как нервная система. 4 класс - это еще маленькие дети, которые не могут глубоко разобраться во многих сложных научных понятиях.

Структурные единицы

Главные структурные и функциональные единицы нервной системы (НС) - нейроны. Они представляют собой сложные возбудимые секретирующие клетки с отростками и воспринимают нервное возбуждение, перерабатывают его и передают другим клеткам. Нейроны также могут оказывать на клетки-мишени модулирующее или тормозное воздействие. Они являются составной частью био- и хеморегуляции организма. С функциональной точки зрения нейроны являются одной из основ организации нервной системы. Они объединяют несколько других уровней (молекулярный, субклеточный, синаптический, надклеточный).

Нейроны состоят из тела (сома), длинного отростка (аксона) и небольших ветвящихся отростков (дендритов). В разных отделах нервной системы они имеют различную форму и величину. В некоторых из них длина аксона может достигать 1,5 м. От одного нейрона отходит до 1000 дендритов. По ним возбуждение распространяется от рецепторов к телу клетки. По аксону импульсы передаются эффекторным клеткам или другим нейронам.

В науке существует понятие «синапс». Аксоны нейронов, подходя к другим клеткам, начинают ветвиться и образуют многочисленные окончания на них. Такие места и называют синапсами. Аксоны образуют их не только на нервных клетках. Синапсы есть на мышечных волокнах. Эти органы нервной системы присутствуют даже на клетках желез внутренней секреции и кровеносных капиллярах. представляют собой покрытые глиальными оболочками отростки нейронов. Они выполняют проводящую функцию.

Нервные окончания

Это специализированные образования, расположенные на кончиках отростков нервных волокон. Они обеспечивают в виде импульса. Нервные окончания участвуют в формировании передающих и воспринимающих концевых аппаратов разной структурной организации. По функциональному назначению выделяют:

Синапсы, которые передают нервный импульс между нервными клетками;

Рецепторы (афферентные окончания), направляющие информацию от места действия фактора внутренней или внешней среды;

Эффекторы, передающие импульс от нервных клеток к другим тканям.

Деятельность нервной системы

Нервная система (НС) - целостная совокупность нескольких взаимосвязанных между собой структур. Она способствует слаженной регуляции деятельности всех органов и обеспечивает реакцию на изменения условий. Нервная система человека, фото которой представлено в статье, связывает воедино двигательную активность, чувствительность и работу иных регуляторных систем (иммунной, эндокринной). Деятельность НС связана с:

Анатомическим проникновением во все органы и ткани;

Установлением и оптимизацией взаимосвязи между организмом и окружающей внешней средой (экологической, социальной);

Координированием всех обменных процессов;

Управлением системами органов.

Структура

Анатомия нервной системы очень сложна. В ней находится много структур, различных по строению и назначению. Нервная система, фото которой свидетельствуют о ее проникновении во все органы и ткани организма, играет важную роль как приемник внутренних и внешних раздражителей. Для этого предназначены особые сенсорные структуры, которые находятся в так называемых анализаторах. Они включают специальные нервные устройства, которые способны воспринимать поступающую информацию. К ним относятся следующие:

Проприорецепторы, собирающие информацию, касающуюся состояния мышц, фасций, суставов, костей;

Экстерорецепторы, располагающиеся в кожных покровах, слизистых оболочках и органах чувств, способные воспринимать полученные из внешней среды раздражающие факторы;

Интерорецепторы, расположенные во внутренних органах и тканях и ответственные за принятие биохимических изменений.

Основное значение нервной системы

Работа НС тесно связана как с окружающим миром, так и с функционированием самого организма. С ее помощью происходит восприятие информации и ее анализ. Благодаря ей происходит распознавание раздражителей внутренних органов и поступающих извне сигналов. Нервная система отвечает за реакции организма на полученную информацию. Именно благодаря ее взаимодействию с гуморальными механизмами регуляции обеспечивается приспособляемость человека к окружающему миру.

Значение нервной системы состоит в обеспечении координации отдельных частей организма и поддержании его гомеостаза (равновесного состояния). Благодаря ее работе происходит приспособление организма к любым изменениям, называемое адаптивным поведением (состоянием).

Базовые функции НС

Функции нервной системы довольно многочисленны. К основным из них относятся следующие:

Регуляция жизнедеятельности тканей, органов и их систем в нормальном режиме;

Объединение (интеграция) организма;

Сохранение взаимосвязи человека с окружающей средой;

Контроль над состоянием отдельных органов и организма в целом;

Обеспечение активации и поддержания тонуса (рабочего состояния);

Определение деятельности людей и их психического здоровья, являющихся основой социальной жизни.

Нервная система человека, фото которой представлено выше, обеспечивает такие мыслительные процессы:

Восприятие, усвоение и переработку информации;

Анализ и синтез;

Формирование мотивации;

Сравнение с имеющимся опытом;

Постановку цели и планирование;

Коррекцию действия (исправление ошибок);

Оценивание результатов деятельности;

Формирование суждений, выводов и заключений, общих (абстрактных) понятий.

Нервная система помимо сигнальной выполняет еще и Благодаря ей выделяемые организмом биологически активные вещества обеспечивают жизнедеятельность иннервируемых органов. Органы, которые лишены такой подпитки, со временем атрофируются и отмирают. Функции нервной системы очень важны для человека. При изменениях существующих условий окружающей среды с их помощью происходит приспособление организма к новым обстоятельствам.

Процессы, происходящие в НС

Нервная система человека, схема которой довольно проста и понятна, отвечает за взаимодействие организма и окружающей среды. Для его обеспечения осуществляются такие процессы:

Трансдукция, представляющая собой превращение раздражения в нервное возбуждение;

Трансформация, в ходе которой происходит преобразование входящего возбуждения с одними характеристиками в выходящий поток с другими свойствами;

Распределение возбуждения по разным направлениям;

Моделирование, представляющее собой построение образа раздражения, заменяющего сам его источник;

Модуляция, изменяющая нервную систему или ее деятельность.

Значение нервной системы человека также состоит во взаимодействии организма с внешней средой. При этом возникают различные ответные реакции на любые виды раздражителей. Основные виды модуляции:

Возбуждение (активация), заключающаяся в повышении активности нервной структуры (это состояние является доминантным);

Торможение, угнетение (ингибиция), состоящее в снижении активности нервной структуры;

Временная нервная связь, представляющая собой создание новых путей передачи возбуждения;

Пластическая перестройка, которая представлена сенситизацией (улучшением передачи возбуждения) и габитуацией (ухудшением передачи);

Активация органа, обеспечивающего рефлекторную реакцию организма человека.

Задачи НС

Основные задачи нервной системы:

Рецепция - улавливание изменений во внутренней или внешней среде. Она осуществляется сенсорными системами при помощи рецепторов и представляет собой восприятие механических, термических, химических, электромагнитных и других видов раздражителей.

Трансдукция - преобразование (кодирование) поступившего сигнала в нервное возбуждение, представляющее собой поток импульсов с характеристиками, свойственными раздражению.

Осуществление проведения, заключающееся в доставке возбуждения по нервным путям в необходимые участки НС и к эффекторам (исполнительным органам).

Перцепция - создание нервной модели раздражения (построение его сенсорного образа). Этот процесс формирует субъективную картину мира.

Трансформация - преобразование возбуждения из сенсорного в эффекторное. Его целью является осуществление ответной реакции организма на произошедшее изменение среды. При этом происходит передача нисходящего возбуждения из высших отделов ЦНС к нижерасположенным или в ПНС (рабочим органам, тканям).

Оценка результата деятельности НС при помощи обратных связей и афферентации (передачи сенсорной информации).

Строение НС

Нервная система человека, схема которой представлена выше, подразделяется в структурном и функциональном отношении. Работу НС невозможно понять в полной мере, не разобравшись в функциях ее основных видов. Только изучив их назначение, можно осознать сложность всего механизма. Нервная система подразделяется на:

Центральную (ЦНС), которая осуществляет реакции различного уровня сложности, называемые рефлексами. Она воспринимает раздражители, получаемые из внешней среды и от органов. К ней относят головной и спинной мозг.

Периферическую (ПНС), соединяющую ЦНС с органами и конечностями. Ее нейроны находятся далеко от головного и спинного мозга. Она не защищена костями, поэтому подвержена механическим повреждениям. Только благодаря нормальному функционированию ПНС возможна человека. Эта система ответственна за реагирование организма на опасность и стрессовые ситуации. Благодаря ей в подобных ситуациях учащается пульс и повышается уровень адреналина. Заболевания сказываются на работе ЦНС.

ПНС состоит из пучков нервных волокон. Они выходят далеко за пределы спинного и головного мозга и направляются к разным органам. Их называют нервами. К ПНС относятся Они являются скоплением нервных клеток.

Заболевания периферической нервной системы разделяются по таким принципам: топографическо-анатомическому, этиологическому, патогенезу, патоморфологии. К ним относятся:

Радикулиты;

Плекситы;

Фуникулиты;

Моно-, поли- и мультиневриты.

По этиологии заболеваний они делятся на инфекционные (микробные, вирусные), токсические, аллергические, дисциркуляторные, дисметаболические, травматические, наследственные, идиопатические, компрессийно-ишемические, вертеброгенные. Заболевания ПНС могут быть первичными (проказа, лептоспироз, сифилис) и вторичными (после детских инфекций, мононуклеоза, при узелковом периартериите). По патоморфологии и патогенезу они делятся на невропатии (радикулопатии), невриты (радикулиты) и невралгии.

Рефлекторная деятельность в значительной степени определяется которые представляют собой совокупность структур ЦНС. Их скоординированная деятельность обеспечивает регуляцию различных функций организма или рефлекторные акты. Нервные центры имеют несколько общих свойств, определяемых структурой и функцией синаптических образований (контакт между нейронами и другими тканями):

Односторонность процесса возбуждения. Он распространяется по в одном направлении.

Иррадиация возбуждения, заключающаяся в том, что при значительном увеличении силы раздражителя происходит расширение области вовлекаемых в этот процесс нейронов.

Суммация возбуждения. Этот процесс облегчается наличием огромного множества синаптических контактов.

Высокая утомляемость. При длительном повторном раздражении происходит ослабление рефлекторной реакции.

Синаптическая задержка. Время рефлекторной реакции полностью зависит от скорости движения и времени распространения возбуждения через синапс. У человека одна такая задержка составляет около 1 мс.

Тонус, который представляет собой наличие фоновой активности.

Пластичность, являющаяся функциональной возможностью существенно модифицировать общую картину рефлекторных реакций.

Конвергенция нервных сигналов, определяющая физиологический механизм пути прохождения афферентной информации (постоянного потока нервных импульсов).

Интеграция функций клеток в нервных центрах.

Свойство доминантного нервного очага, характеризующегося повышенной возбудимостью, способностью к возбуждению и суммированию.

Цефализация нервной системы, заключающаяся в перемещении, координации деятельности организма в главных отделах ЦНС и сосредоточении в них функции регуляции.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.